Renormalized nonlinear wave equations with additive white noise

Herbert Koch*1

¹Bonn University – Endenicher Allee 60, Allemagne

Résumé

Conceptually renormalized nonlinear wave equations arise as large scale limit of nonlinear wave equations with more regular noise. Without renormalization only trivial limits can be obtained in 2 and 3 dimensions. The renormalization is similar to the one for stochastic parabolic equations.

The problem decomposes into two parts: First the study of white noise and random fields leading to what is called enhanced white noise, followed by a fixed point iteration for wave equations with rough coefficients. This suffices in two space dimensions, but in three dimensions in addition a paraproduct decomposition is used.

Talk 1) Introduction and structure of the results and proofs

Talk 2) White noise and random fields

Talk 3) The fixed point argument and random operators.

*Intervenant