2-5 Sep 2019 Rennes (France)

Abstracts > Amrouche Chérif

Elliptic Problems in Smooth and Non Smooth Domains
Chérif Amrouche  1  , Mohand Moussaoui  2  , Huy Hoang Nguyen  3, 4  
1 : Laboratoire de Mathématiques et de leurs Applications de Pau  (LMA-PAU)  -  Website
CNRS : UMR5142, Université de Pau et des Pays de l'Adour [UPPA]
Bâtiment I.P.R.A Avenue de l'Université BP 1155 64013 Pau cedex -  France
2 : Laboratoire des EDP non-linéaires et histoire des mathématiques  -  Website
École normale supérieure - Kouba-Alger
3 : Laboratoire de Mathématiques et de leurs Applications  (LMAP)  -  Website
Université de Pau et des Pays de l'Adour, Centre National de la Recherche Scientifique : UMR5142
4 : Instituto de Matemática, Univ. Federal do Rio de Janeiro  -  Website

We are interested here in questions related to the regularity of solutions of elliptic problems with Dirichlet or Neumann boundary condition. For the last 30 years, many works have been concerned with questions when Ω is a Lipschitz domain.
We give here some complements for the case of the Laplacian, the Bilaplacian and the operator div (A∇), when A is a matrix or a function, and we extend this study to obtain other regularity results for domains having an adequate regularity.
Using the duality method, we will then revisit the work of Lions-Magenes, concerning the so-called very weak solutions, when the data are less regular. Thanks to the interpolation theory, it permits us to extend the classes of solutions and then to obtain new results of regularity.



  • Poster
Online user: 15